Package: cjbart 0.3.2
cjbart: Heterogeneous Effects Analysis of Conjoint Experiments
A tool for analyzing conjoint experiments using Bayesian Additive Regression Trees ('BART'), a machine learning method developed by Chipman, George and McCulloch (2010) <doi:10.1214/09-AOAS285>. This tool focuses specifically on estimating, identifying, and visualizing the heterogeneity within marginal component effects, at the observation- and individual-level. It uses a variable importance measure ('VIMP') with delete-d jackknife variance estimation, following Ishwaran and Lu (2019) <doi:10.1002/sim.7803>, to obtain bias-corrected estimates of which variables drive heterogeneity in the predicted individual-level effects.
Authors:
cjbart_0.3.2.tar.gz
cjbart_0.3.2.zip(r-4.5)cjbart_0.3.2.zip(r-4.4)cjbart_0.3.2.zip(r-4.3)
cjbart_0.3.2.tgz(r-4.4-any)cjbart_0.3.2.tgz(r-4.3-any)
cjbart_0.3.2.tar.gz(r-4.5-noble)cjbart_0.3.2.tar.gz(r-4.4-noble)
cjbart_0.3.2.tgz(r-4.4-emscripten)cjbart_0.3.2.tgz(r-4.3-emscripten)
cjbart.pdf |cjbart.html✨
cjbart/json (API)
NEWS
# Install 'cjbart' in R: |
install.packages('cjbart', repos = c('https://tsrobinson.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tsrobinson/cjbart/issues
Last updated 1 years agofrom:b13ecf8399. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | OK | Oct 30 2024 |
R-4.5-linux | OK | Oct 30 2024 |
R-4.4-win | OK | Oct 30 2024 |
R-4.4-mac | OK | Oct 30 2024 |
R-4.3-win | OK | Oct 30 2024 |
R-4.3-mac | OK | Oct 30 2024 |
Exports:AMCEcjbarthet_vimpIMCEpIMCErf_vimpRMCE
Dependencies:BARTbase64encbitbit64bslibcachemclicliprcolorspacecpp11crayondata.treeDiagrammeRdigestdplyrevaluatefansifarverfastmapfontawesomefsgenericsggplot2gluegtablehighrhmshtmltoolshtmlwidgetsigraphisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigprettyunitsprogresspurrrR6randomForestSRCrappdirsrbibutilsRColorBrewerRcppRdpackreadrrlangrmarkdownrstudioapisassscalesstringistringrsurvivaltibbletidyrtidyselecttinytextzdbutf8vctrsviridisLitevisNetworkvroomwithrxfunyaml